Científicos en búsqueda de las galaxias de antimateria
Una de las últimas misiones del transbordador espacial se encargará de transportar un poderoso detector de partículas, que podría descifrar algunos de los más grandes misterios del universo, según la NASA
El programa de los transbordadores espaciales de la NASA está llegando a su fin con viajes para montar la Estación Espacial Internacional (EEI), pero por una decisión del Congreso estadounidense se agregó un vuelo más el año próximo para lanzar al espacio un buscador de galaxias de antimateria.
El dispositivo que realiza la búsqueda se denomina Espectrómetro Alfa Magnético (AMS, por sus siglas en inglés). "Es un detector de rayos cósmicos valuado en 1.500 millones de dólares, y será llevado hasta la EEI por el transbordador", se explicó en la NASA.
http://www.eldia.com.ar/edis/20090913/revistadomingo42.htm
"Además de detectar galaxias lejanas formadas completamente por antimateria, el AMS también pondrá a prueba las teorías más aceptadas sobre la materia oscura, una sustancia invisible y misteriosa que conforma el 83 por ciento de la materia del universo. Asimismo, buscará strangelets, una forma de materia, aún teórica, que es ultra-masiva porque contiene los famosos quarks extraños. Un mejor entendimiento de los strangelets ayudará a los científicos a estudiar los microquásares y también los diminutos agujeros negros primordiales, a medida que se evaporan, lo que probaría la existencia de éstos", se agregó.
"EXOTICOS FENOMENOS"
En el mismo sentido, se apuntó que todos estos "exóticos fenómenos" pueden "hacerse notar por los rayos cósmicos de energía ultra-alta" que emiten, el tipo de partículas que constituyen la "especialidad" del AMS.
"Por primera vez, el AMS medirá los rayos cósmicos de muy alta energía con gran precisión", explicó el físico Samuel Ting, premio Nobel y profesor del Instituto Tecnológico de Massachusetts (MIT), creador del AMS.
Para Ting,"galaxias de antimateria, materia oscura, strangelets -estos son precisamente los fenómenos que los científicos ya conocen. Si usamos la historia como guía, los descubrimientos más emocionantes serán cosas que nadie haya imaginado antes. Así como los radiotelescopios y los telescopios infrarrojos un día revelaron fenómenos cósmicos que antes eran invisibles con los telescopios ópticos tradicionales, el AMS abrirá a la exploración otra faceta del cosmos. Estaremos explorando nuevos territorios. Las probabilidades de hacer descubrimientos son enormes".
COMPARACION
El científico a menudo compara al AMS con los aceleradores de partículas de elevada potencia, de las instalaciones como la CERN (sigla que en francés significa Conseil Européen pour la Recherche Nucléaire), en Ginebra.
"Más que detectar rayos cósmicos de alta velocidad que provienen de todas partes de la galaxia -enfatizó Ting-, estos aceleradores subterráneos crean sus propias partículas, usando enormes cantidades de energía eléctrica. Para estudiar dichas partículas, la CERN y el AMS usan el mismo truco básico: ambos utilizan poderosos campos magnéticos para desviar las trayectorias de las partículas, y con detectores hechos con placas de silicio y otros sensores colocados en el interior de los detectores, trazan las trayectorias curvas de las partículas".
El científico dijo además que "los sensores generan muchos terabits de datos y las supercomputadoras se encargan de reducir todos esos datos para de ellos inferir la masa de cada partícula, su energía y su carga eléctrica. La supercomputadora es, en parte, la razón principal por la cual el AMS debe montarse en la EEI en vez de ser un satélite independiente. El AMS produce datos en cantidades tan grandes que no pueden ser enviados a la Tierra desde el espacio, así que se deberá llevar a bordo una supercomputadora con 650 unidades de procesamiento para hacer la reducción de los datos en órbita".
DIFERENCIAS
Sin embargo, Ting admitió que "hay dos diferencias importantes entre el AMS y los aceleradores subterráneos. En primer lugar, el AMS detectará partículas tales como núcleos pesados que poseen muchísima más energía que la que los aceleradores de partículas pueden reunir. El acelerador de partículas más poderoso del mundo, el Gran Colisionador de Hadrones de la CERN, puede hacer chocar partículas con una energía combinada de aproximadamente 7 tera-electronvoltios. En contraste, los rayos cósmicos pueden tener energías de 100 millones de TeV o más. La otra diferencia importante es que los aceleradores pueden hacer chocar las partículas unas contra otras para aprender algo sobre las partículas mismas, mientras que el AMS tomará muestras de partículas de alta energía que provienen del espacio profundo con el fin de conocer algo más sobre el cosmos".
Uno de los misterios sin resolver es el caso de la antimateria perdida. De acuerdo con los mejores modelos hechos por los físicos, "el Big Bang debería de haber producido la misma cantidad de materia que de antimateria. Entonces, ¿a dónde fue la antimateria? No puede estar cerca, ya que si así fuese, veríamos emisiones brillantes de rayos X en aquellos lugares donde la materia y la antimateria se aniquilarían al entrar en contacto".
"Otra explicación -añadió- puede ser que algunas galaxias lejanas estén hechas enteramente de antimateria en vez de materia. Debido a que la antimateria no es nada diferente de la materia común, los astrónomos no podrían distinguir si una galaxia lejana está hecha de materia o de antimateria sólo observándola. Sin embargo, el AMS hallaría fuertes evidencias de las galaxias de antimateria si detectara tan sólo un núcleo de anti-helio o de algún elemento de antimateria más pesado".
El creador del AMS puso de relieve que "las colisiones entre rayos cósmicos cerca de la Tierra pueden producir partículas de antimateria, pero las probabilidades de que esas colisiones produzcan un núcleo intacto de anti-helio son tan pequeñas que aun si se encontrara un sólo núcleo de anti-helio sería una poderosa evidencia de que aquel núcleo se ha movido hasta la Tierra desde una región remota del universo que esté dominada por antimateria".
MATERIA OSCURA
Otro misterio que el AMS ayudará a resolver es la naturaleza de la materia oscura. Los científicos saben que la gran mayoría del universo esta compuesta por una materia oscura que aún no ha podido ser vista directamente, en vez de por materia común. Ellos simplemente no saben qué es la materia oscura. Una teoría en boga es que la materia oscura está hecha de una partícula llamada "neutralino". Las colisiones entre neutralinos deberían de producir una "gran cantidad de positrones de alta energía", de modo que el AMS podría probar que la materia oscura está hecha de neutralinos buscando este exceso de positrones de alta energía.
No hay comentarios:
Publicar un comentario
Gracias por dejar tu cometario.Esperamos siempre que colabores con este blog.